Engel Series and Cohen-Egyptian Fraction Expansions

نویسندگان

  • Vichian Laohakosol
  • Tuangrat Chaichana
  • Jittinart Rattanamoong
  • Narakorn Rompurk Kanasri
چکیده

Recommended by Stéphane Louboutin Two kinds of series representations, referred to as the Engel series and the Cohen-Egyptian fraction expansions, of elements in two different fields, namely, the real number and the discrete-valued non-archimedean fields are constructed. Both representations are shown to be identical in all cases except the case of real rational numbers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Innnite Family of Engel Expansions of Rogers-ramanujan Type

The Extended Engel Expansion is an algorithm that leads to unique series expansions of q-series. Various examples related to classical partition theorems, including the RogersRamanujan identities, have been given recently. The object of this paper is to show that the new and elegant Rogers-Ramanujan generalization found by Garrett, Ismail, and Stanton also ts into this framework. This not only ...

متن کامل

An In nite Family of Engel

The Extended Engel Expansion is an algorithm that leads to unique series expansions of q-series. Various examples related to classical partition theorems, including the Rogers-Ramanujan identities, have been given recently. The object of this paper is to show that the new and elegant Rogers-Ramanujan generalization found by Garrett, Ismail, and Stanton also ts into this framework. This not only...

متن کامل

On the real quadratic fields with certain continued fraction expansions and fundamental units

The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element  where $dequiv 2,3( mod  4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and  $n_d$ and $m_d...

متن کامل

q–ENGEL SERIES EXPANSIONS AND SLATER’S IDENTITIES

We describe the q–Engel series expansion for Laurent series discovered by John Knopfmacher and use this algorithm to shed new light on partition identities related to two entries from Slater’s list. In our study Al-Salam/Ismail and Santos polynomials play a crucial rôle. Dedicated to the memory of John Knopfmacher 1937–1999

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009